The search functionality is under construction.

Keyword Search Result

[Keyword] optical switching(35hit)

21-35hit(35hit)

  • Multiwavelength Opaque Optical-Crossconnect Networks

    Evan L. GOLDSTEIN  Lih Y. LIN  Robert W. TKACH  

     
    INVITED PAPER-Communication Networks

      Vol:
    E82-B No:8
      Page(s):
    1095-1104

    Over roughly the past decade, the lightwave-research community has converged upon a broad architectural vision of the emerging national-scale core network. The vision has been that of a transparent, reconfigurable, wavelength-routed network, in which signals propagate from source to destination through a sequence of intervening nodes without optoelectronic conversion. Broad benefits have been envisioned. Despite the spare elegance of this vision, it is steadily becoming clear that due to the performance, cost, management, and multivendor-interoperability obstacles attending transparency, the needs of civilian communications will not drive the core network to transparency on anything like a national scale. Instead, they will drive it to 'opaque' form, with critical reliance on optoelectronic conversion via transponders. Transponder-based network architectures in fact not only offer broad transmission and manageability benefits. They also make networking at the optical layer possible by offering to the nodes managed and performance-engineered standard-interface signals that can then be reconfigured for provisioning and restoration purposes by optical-layer elements. Because of this, the more pressing challenges in lightwave networking are steadily shifting towards the mechanisms that will be used for provisioning and restoration. Among these are mechanisms based on free-space micromachined optical crossconnects. We describe recent progress on these new devices and the architectures into which they fit, and summarize the reasons why they appear to be particularly well-matched to the task of provisioning and restoring opaque multiwavelength core long-haul networks.

  • Multiwavelength Opaque Optical-Crossconnect Networks

    Evan L. GOLDSTEIN  Lih Y. LIN  Robert W. TKACH  

     
    INVITED PAPER-Communication Networks

      Vol:
    E82-C No:8
      Page(s):
    1361-1370

    Over roughly the past decade, the lightwave-research community has converged upon a broad architectural vision of the emerging national-scale core network. The vision has been that of a transparent, reconfigurable, wavelength-routed network, in which signals propagate from source to destination through a sequence of intervening nodes without optoelectronic conversion. Broad benefits have been envisioned. Despite the spare elegance of this vision, it is steadily becoming clear that due to the performance, cost, management, and multivendor-interoperability obstacles attending transparency, the needs of civilian communications will not drive the core network to transparency on anything like a national scale. Instead, they will drive it to 'opaque' form, with critical reliance on optoelectronic conversion via transponders. Transponder-based network architectures in fact not only offer broad transmission and manageability benefits. They also make networking at the optical layer possible by offering to the nodes managed and performance-engineered standard-interface signals that can then be reconfigured for provisioning and restoration purposes by optical-layer elements. Because of this, the more pressing challenges in lightwave networking are steadily shifting towards the mechanisms that will be used for provisioning and restoration. Among these are mechanisms based on free-space micromachined optical crossconnects. We describe recent progress on these new devices and the architectures into which they fit, and summarize the reasons why they appear to be particularly well-matched to the task of provisioning and restoring opaque multiwavelength core long-haul networks.

  • Hybrid Integrated 44 Optical Matrix Switch Module on Silica Based Planar Waveguide Platform

    Tomoaki KATO  Jun-ichi SASAKI  Tsuyoshi SHIMODA  Hiroshi HATAKEYAMA  Takemasa TAMANUKI  Shotaro KITAMURA  Masayuki YAMAGUCHI  Tatsuya SASAKI  Keiro KOMATSU  Mitsuhiro KITAMURA  Masataka ITOH  

     
    INVITED PAPER-Photonic Switching Devices

      Vol:
    E82-C No:2
      Page(s):
    305-312

    The hybrid electrical/optical multi-chip integration technique for optical modules for optical network system has been developed. Employing the technique, a 44 broadcast-and-select type optical matrix switch module has been realized. The module consists of four sets of silica waveguide 1 : 4 splitters/4 : 1 combiners, four 4-channel arrays of polarization insensitive semiconductor optical amplifiers with spot-size converters as optical gates, printed wiring chips for electrical wiring and single mode fibers for optical signal interface on planar waveguide platform fabricated by atmospheric pressure chemical vapor deposition. All the gates and the wiring chips were mounted precisely onto the platform at once in flip-chip manner by self-align technique using AuSn solder bumps. Coupling loss between the waveguide and the SOA gate was estimated to be 4.5 dB. Averaged fiber-to-fiber signal gain, on-off ratio and polarization dependent loss for each of the signal paths was 7 dB 2 dB, more than 40 dB and 0.5 dB, respectively. High speed 10 Gb/s photonic cell switching as short as 2 nsec has been successfully achieved.

  • Hybrid Integrated 44 Optical Matrix Switch Module on Silica Based Planar Waveguide Platform

    Tomoaki KATO  Jun-ichi SASAKI  Tsuyoshi SHIMODA  Hiroshi HATAKEYAMA  Takemasa TAMANUKI  Shotaro KITAMURA  Masayuki YAMAGUCHI  Tatsuya SASAKI  Keiro KOMATSU  Mitsuhiro KITAMURA  Masataka ITOH  

     
    INVITED PAPER-Photonic Switching Devices

      Vol:
    E82-B No:2
      Page(s):
    357-364

    The hybrid electrical/optical multi-chip integration technique for optical modules for optical network system has been developed. Employing the technique, a 44 broadcast-and-select type optical matrix switch module has been realized. The module consists of four sets of silica waveguide 1 : 4 splitters/4 : 1 combiners, four 4-channel arrays of polarization insensitive semiconductor optical amplifiers with spot-size converters as optical gates, printed wiring chips for electrical wiring and single mode fibers for optical signal interface on planar waveguide platform fabricated by atmospheric pressure chemical vapor deposition. All the gates and the wiring chips were mounted precisely onto the platform at once in flip-chip manner by self-align technique using AuSn solder bumps. Coupling loss between the waveguide and the SOA gate was estimated to be 4.5 dB. Averaged fiber-to-fiber signal gain, on-off ratio and polarization dependent loss for each of the signal paths was 7 dB 2 dB, more than 40 dB and 0.5 dB, respectively. High speed 10 Gb/s photonic cell switching as short as 2 nsec has been successfully achieved.

  • 1616 Two-Dimensional Optoelectronic Integrated Receiver Array for Highly Parallel Interprocessor Networks

    Hiroshi YANO  Sosaku SAWADA  Kentaro DOGUCHI  Takashi KATO  Goro SASAKI  

     
    PAPER-Optoelectronic Integrated Receivers

      Vol:
    E80-C No:5
      Page(s):
    689-694

    A two-dimensional receiver OEIC array having an address selector for highly parallel interprocessor networks has been realized. The receiver OEIC array consists of two-dimensionally arranged 1616 (256) optical receiver cells with switching transistors, address selectors (decoders), and a comparator. Each optical receiver comprises a pin PD and a transimpedance-type HBT amplifier. The HBT has an InP passivation structure to suppress the emitter-size effect, which results in the improvement of current gains, especially at low collector current densities. The receiver OEIC array was fabricated on a 3-inch diameter InP substrate with pin/HBT integration technology. Due to the function of address selection, only one cell is activated and the other cells are mute, so the receiver OEIC array shows low crosstalk and low power consumption characteristics. The array also shows a 266-Mb/s data transmission capability. This receiver OEIC array is a most complex InP-based OEIC ever reported. The realization of the two-dimensional receiver OEIC array promises the future interprocessor networks with highly parallel optical interconnections.

  • Reduction of Critical Power in All-Optical Switching with Series-Tapered Nonlinear Directional Coupler

    Guosheng PU  Tetsuya MIZUMOTO  Kenichiro ITO  Yoshiki HIGASHIDE  Yoshiyuki NAITO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E78-C No:9
      Page(s):
    1315-1318

    A novel series-tapered nonlinear directional coupler is proposed to improve all-optical switching characteristics. Its switching characteristics are analyzed by using a beam propagation method based on the Galerkin's finite element technique. It is presented that the critical power of the series-tapered nonlinear directional coupler is smaller than conventional uniform symmetric and tapered nonlinear directional couplers.

  • All-Optical Switching Property of an MQW-Sandwich Nonlinear Directional Coupler with Nonlinear Losses

    Naomichi OKAMOTO  Xue Jun MENG  Okihiro SUGIHARA  

     
    PAPER-Opto-Electronics

      Vol:
    E78-C No:3
      Page(s):
    299-303

    We analyze all-optical switching property of a nonlinear directional coupler (NLDC) having an MQW coupling layer with both nonlinear and linear losses, and examine the effect of nonlinear losses. We use the Galerkin finite element method accompanied by a prodictor-corrector algorithm. The propagation loss along the strongly-coupled NLDC decreases with increasing nonlinear absorption coefficient due to saturation in absorption. A propagation loss of 8.18 dB or 2.38 dB in the bar state of the cross state is much smaller than the bulk loss of MQW structure which exceeds 50 dB. The nonlinear losses lengthen the coupling length and bring it close to that of a lossfree NLDC, while the linear losses shorten. It is found that the property of the cross state is greatly improved by counting the nonlinear losses: The cross-state output power and the output power ratio of two waveguides increase, and the cross state input power, that is, the switching power decreases.

  • Numerical Analysis of an Optical X Coupler with a Nonlinear Dielectric Region

    Hirohisa YOKOTA  Koichi KIMURA  Sadao KURAZONO  

     
    PAPER

      Vol:
    E78-C No:1
      Page(s):
    61-66

    For an application to the optical signal processing devices, we propose the optical X coupler which consists of two bending waveguides and a nonlinear dielectric region. To analyze this structure accurately we utilized the iterative finite difference beam propagation method (iterative FD-BPM). In this paper the formulation of the iterative FD-BPM for one wave and two waves cases are presented, respectively. We investigate following two cases. First, we consider the case that the light is launched into one of the input ports. We calculate the evolutions of the field amplitude and the transmission characteristics for the input power. Second, we consider the case that the signal light with the constant power is launched into one of the input ports and that the control light with the wavelength different from that of the signal light is launched into another input port. We calculate the evolutions of the field amplitude and the transmission characteristics of the signal light for the power of control light. As a result of the analysis, we show that all-optical switching operation is possible in the proposed structure.

  • Time-Resolved Nonstationary-Field Dynamics in Nonlinear Optical Channel Waveguides: Numerical Evidence for Intrapulse Switching and Space-Time Spontaneous Symmetry-Breaking Instabilities

    Kazuya HAYATA  Masanori KOSHIBA  

     
    LETTER

      Vol:
    E77-C No:11
      Page(s):
    1828-1832

    Numerical simulations for the (3+1)-dimensional optical-field dynamics of nonstationary pulsed beams that propagate down Kerr-like nonlinear channel waveguides are carried out for what is to our knowledge the first time. Time-resolved intrapulse switching due to spontaneous symmetry breaking of optical fields from a quasilinear symmetric field to a nonlinear asymmetric field is analyzed. A novel instability phenomenon triggered by the symmetry breakdown is found.

  • Coupled-Mode Analysis of a Symmetric Nonlinear Directional Coupler Using a Singular Perturbation Scheme

    Kiyotoshi YASUMOTO  Naoto MAEKAWA  Hiroshi MAEDA  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1771-1775

    A coupled-mode analysis of a symmetric planar nonlinear directional coupler (NLDC) is presented by using a singular perturbation scheme. The effects of linear coupling and nonlinear modification of refractive index are treated to be small perturbations, and the modal fields of isolated linear waveguides are employed as the basis of propagation model. The self-consistent first-order coupled-mode equations governing the transfer of optical power along the NLDC are obtained in analytically closed form. It is shown that tha critical power for optical switching derived from the coupled-mode equations is in close agreement with that obtained by the numerical analysis using the finite difference beam propagation mathod.

  • Numerical Analysis of Optical Switching Characteristics of Tapered Nonlinear Directional Coupler

    Guosheng PU  Tetsuya MIZUMOTO  Yoshiyasu SATO  Kenichiro ITO  Yoshiyuki NAITO  

     
    PAPER-Opto-Electronics

      Vol:
    E77-C No:9
      Page(s):
    1489-1495

    A novel nonlinear directional coupler consisting of tapered and uniform waveguides with self-focusing or self-defocusing nonlinear material is proposed to improve all-optical switching characteristics. Its switching characteristics are analyzed by using a beam propagation method based on the Galerkin's finite element technique (FE-BPM), in which nonuniform sampling spacings along the transverse coordinate are adopted. It is presented that the tapered nonlinear directional coupler shows fairly distinct 'high' and 'low' states of output power with steep transition versus input power. This property is discussed in comparison with conventional nonlinear directional couplers consisting of uniform symmetric and uniform asymmetric coupled waveguides. In addition, the effects of loss on the characteristics of tapered nonlinear directional coupler are examined.

  • All-Optical Switching Phenomenon in Polydiacetylene (12, 8) Based Nonlinear Directional Coupler

    Akimasa KANEKO  Takashi KUWABARA  Tatsuo WADA  Hiroyuki SASABE  Keisuke SASAKI  

     
    PAPER

      Vol:
    E77-C No:5
      Page(s):
    704-708

    Optical Kerr effect were applied to all-optical switching devices in the form of nonlinear waveguide directional couplers. The nonlinear waveguide directional coupler consists of a quartz thin gap between two Corning 7059 guided layers on a pyrex substrate with ion-milled grating and organic thin film as a top layer. The vacuum-deposited polydiacetylene (12, 8) film was used as an organic nonlinear material. Power-dependent switching phenomenon in this asymmetrical nonlinear directional coupler was observed by 100 fs pulse duration of mode-locked Ti: Sapphire laser.

  • Numerical Analysis of a Symmetric Nonlinear Directional Coupler

    Hiroshi MAEDA  Kiyotoshi YASUMOTO  

     
    PAPER-Opto-Electronics

      Vol:
    E77-C No:2
      Page(s):
    298-302

    The power transfer characteristics of a symmetric nonlinear directional coupler (NLDC) are analyzed rigorously using the beam propagation method based on the finite difference scheme. The NLDC consists of two linear waveguides separated by a Kerr-like nonlinear gap layer. The change of nonlinear refractive index along the coupler is precisely evaluated by making use of the second-order iteration procedure with respect to a small propagation length. For the incidence of TE0 mode of the isolated linear waveguide, the highly accurate numerical results are obtained for the behavior of power transfer, and the coupling length and critical power for optical switching. The dependencies of the coupling length and critical power on the width of the gap layer and the input power levels are discussed, compared with those predicted by the coupled-mode approximations.

  • Optical Solitons for Signal Processing

    Stephen R. FRIBERG  

     
    INVITED PAPER

      Vol:
    E75-C No:1
      Page(s):
    3-9

    We consider applications of optical solitons to signal processing. Soliton switching devices promise ultrafast operation and compatibility with communications systems using optical pulses. Quantum soliton effects include broadband squeezing and quantum nondemolition measurements, and can reduce noise and increase sensitivities of optical measurements. We report the demonstration of two-color soliton switching and describe progress towards implementation of quantum nondemolition measurement of photon number using soliton collisions.

  • Optical Solitons for Signal Processing

    Stephen R. FRIBERG  

     
    INVITED PAPER

      Vol:
    E75-A No:1
      Page(s):
    5-11

    We consider applications of optical solitons to signal processing. Soliton switching devices promise ultrafast operation and compatibility with communications systems using optical pulses. Quantum soliton effects include broadband squeezing and quantum nondemolition measurements, and can reduce noise and increase sensitivities of optical measurements. We report the demonstration of two-color soliton switching and describe progress towards implementation of quantum nondemolition measurement of photon number using soliton collisions.

21-35hit(35hit)